Preserving Eastern or Offshore Oil for Preventing Green Paradoxes?

Mark Schopf

University of Paderborn

IEW
Paris, 21 June 2013
Carbon Supply Reducing Policies

Harstad (2012)
- Neither carbon taxes nor tariff policies but purchasing deposits can lead to first best solutions
- Optimal climate policies
 \[\rightarrow\] No green paradoxes

Hoel (2013) (Emissions from the Production Process)
- Purchasing high-value deposits today leads to the weak and can lead to the strong green paradox
- Purchasing low-value deposits today leads to constant present and declining cumulative emissions
- Partial equilibrium model
 \[\rightarrow\] No demand side reactions
Carbon Supply Reducing Policies

Harstad (2012)
- Neither carbon taxes nor tariff policies but purchasing deposits can lead to first best solutions
- Optimal climate policies
 → No green paradoxes

Hoel (2013) (Emissions from the Production Process)
- Purchasing high-value deposits today leads to the weak and can lead to the strong green paradox
- Purchasing low-value deposits today leads to constant present and declining cumulative emissions
- Partial equilibrium model
 → No demand side reactions
General Structure

Adapted from Eichner & Pethig 2011 and Ritter & Schopf 2013

- The world consists of one fossil fuel exporting country F and two fossil fuel importing countries A and N
- The firms in A and N produce the unique commodity, selling it as price takers on the world market, using fossil fuel as the only input
- In each country, there is one lifetime ($t = 1, 2$) utility maximizing household, deriving utility from commodity consumption, owning the firm at home
- The firm in F extracts fossil fuel, selling it as price taker on the world market, facing convex extraction costs in form of the commodity
General Structure

Adapted from Eichner & Pethig 2011 and Ritter & Schopf 2013

- The world consists of one fossil fuel exporting country F and two fossil fuel importing countries A and N
- The firms in A and N produce the unique commodity, selling it as price takers on the world market, using fossil fuel as the only input
- In each country, there is one lifetime ($t = 1, 2$) utility maximizing household, deriving utility from commodity consumption, owning the firm at home
- The firm in F extracts fossil fuel, selling it as price taker on the world market, facing convex extraction costs in form of the commodity
General Structure

Adapted from Eichner & Pethig 2011 and Ritter & Schopf 2013

- The world consists of one fossil fuel exporting country F and two fossil fuel importing countries A and N
- The firms in A and N produce the unique commodity, selling it as price takers on the world market, using fossil fuel as the only input
- In each country, there is one lifetime ($t = 1, 2$) utility maximizing household, deriving utility from commodity consumption, owning the firm at home
- The firm in F extracts fossil fuel, selling it as price taker on the world market, facing convex extraction costs in form of the commodity
Adapted from Eichner & Pethig 2011 and Ritter & Schopf 2013

- The world consists of one fossil fuel exporting country F and two fossil fuel importing countries A and N
- The firms in A and N produce the unique commodity, selling it as price takers on the world market, using fossil fuel as the only input
- In each country, there is one lifetime ($t = 1, 2$) utility maximizing household, deriving utility from commodity consumption, owning the firm at home
- The firm in F extracts fossil fuel, selling it as price taker on the world market, facing convex extraction costs in form of the commodity
Commodity Producers and Households

Commodity producers:

\[
\max_{e_{i1}, e_{i2}} \Pi^i = \sum_t [p_{xt} X^i(e_{it}) - p_{et} e_{it}]
\]

Households:

\[
\max_{x_{i1}, x_{i2}} U(x_{i1}, x_{i2}) = (\alpha_1 x_{i1}^{-b} + \alpha_2 x_{i2}^{-b})^{-\frac{h}{b}}
\]

s.t.

\[
\sum_t p_{xt} x_{it} = \Pi^i* - \sum_t [\mu_t \bar{e}_F t + \nu_t e_{Ft}]
\]

Commodity market:

\[
x^s_{At} + x^s_{Nt} = x_{At} + x_{Nt} + x_{Ft} + x_{Et}
\]

where \(x^s_{it} = X^i(e_{it})\)
Commodity Producers and Households

- Commodity producers:
 \[
 \max_{e_{i1}, e_{i2}} \Pi^i = \sum_t [p_{xt} X^i(e_{it}) - p_{et} e_{it}]
 \]

- Households:
 \[
 \max_{x_{i1}, x_{i2}} U(x_{i1}, x_{i2}) = (\alpha_1 x_{i1}^{-b} + \alpha_2 x_{i2}^{-b})^{-\frac{1}{b}}
 \]
 \[
 \text{s.t. } \sum_t p_{xt} x_{it} = \Pi^i \ast - \sum_t [\mu_t \bar{e}_{Ft} + \nu_t \bar{e}_{Ft}]\]

- Commodity market:
 \[
 x_{At}^s + x_{Nt}^s = x_{At} + x_{Nt} + x_{Ft} + x_{Et}
 \]
 where \(x_{it}^s = X^i(e_{it}) \)
Commodity Producers and Households

- Commodity producers:
 \[
 \max_{e_{i1}, e_{i2}} \Pi^i = \sum_t [p_{xt}X^i(e_{it}) - p_{et}e_{it}]
 \]

- Households:
 \[
 \max_{x_{i1}, x_{i2}} U(x_{i1}, x_{i2}) = (\alpha_1 x_{i1}^{-b} + \alpha_2 x_{i2}^{-b})^{-\frac{1}{b}}
 \]
 \[
 \text{s.t. } \sum_t p_{xt}x_{it} = \Pi^i - \sum_t [\mu_t \bar{\epsilon}_F t + \nu_t \epsilon_F t]
 \]

- Commodity market:
 \[
 X^s_{At} + X^s_{Nt} = X_{At} + X_{Nt} + X_F + X_{Et}
 \]
 where \(X^i(e_{it})\)
Purchasing high-value deposits:

\[
\max_{e_{F1}, e_{F2}} \Pi^F = \sum_t [p_{et} [e_{Ft} - \bar{e}_{Ft}] + \mu_t \bar{e}_{Ft} - p_{xt} [X^{Et}(e_{Ft}, e_{Ft}) - X^{Et}(\bar{e}_{Ft}, e_{Ft})]]
\]

\[
\tilde{e}_{Ft} = e_{Ft} - \bar{e}_{Ft} = e_{At} + e_{Nt}
\]

where \(X^{Et}(e_{Ft}, e_{Ft}) - X^{Et}(\bar{e}_{Ft}, e_{Ft}) = x_{Et}\)

Purchasing low-value deposits:

\[
\max_{e_{F1}, e_{F2}} \Pi^F = \sum_t [p_{et} [e_{Ft} - e_{Ft}] + \nu_t e_{Ft} - p_{xt} X^{Et}(e_{Ft} - e_{Ft}, e_{Ft} - e_{Ft})]
\]

\[
e_{Ft} = e_{Ft} - e_{Ft} = e_{At} + e_{Nt}
\]

where \(X^{Et}(e_{Ft} - e_{Ft}, e_{Ft} - e_{Ft}) = x_{Et}\)
Fossil Fuel Extractor

- Purchasing high-value deposits:

\[
\max_{e_{F1}, e_{F2}} \Pi^F = \sum_t [p_{et}[e_{Ft} - \bar{e}_{Ft}] + \mu_t \bar{e}_{Ft} - p_{xt}[X^{Et}(e_{Ft}, e_{Ft}) - \bar{X}^{Et}(\bar{e}_{Ft}, e_{Ft})]]
\]

\[
\tilde{e}_{Ft} = e_{Ft} - \bar{e}_{Ft} = e_{At} + e_{Nt}
\]

where \(X^{Et}(e_{Ft}, e_{Ft}) - \bar{X}^{Et}(\bar{e}_{Ft}, e_{Ft}) = x_{Et} \)

- Purchasing low-value deposits:

\[
\max_{e_{F1}, e_{F2}} \Pi^F = \sum_t [p_{et}[e_{Ft} - e_{Ft}] + \nu_t e_{Ft} - p_{xt}[X^{Et}(e_{Ft} - e_{Ft}, e_{Ft} - \bar{e}_{Ft})]]
\]

\[
e_{Ft} = e_{Ft} - e_{Ft} = e_{At} + e_{Nt}
\]

where \(X^{Et}(e_{Ft} - e_{Ft}, e_{Ft} - \bar{e}_{Ft}) = x_{Et} \)
Graphical Analysis ($d\bar{e}_{F1} > 0$)
Graphical Analysis ($d\bar{e}_{F1} > 0$)
Graphical Analysis ($d\overline{e}_{F1} > 0$)
Graphical Analysis ($d\bar{e}_{F1} > 0$)
Analytical Results ($d\overline{e}_{F1} > 0$)

Due to purchasing high-value deposits in the first period

- the emissions in the first period do not decline by more than $d\overline{e}_{F1}$
- and the cumulative emissions do not decline by more than $d\overline{e}_{F1}$ if $\Gamma_1 \geq 0$, and they decline by more than $d\overline{e}_{F1}$ if $\Gamma_1 < 0$

$$\Gamma_1 \geq 0 \text{ iff } \frac{e_{F1}\eta_{F1,2}}{e_{N2}\eta_{N2}} + \frac{e_{F1}\eta_{F1,2}}{e_{F2}\eta_{F2,2}} \geq 1$$
Conditions for the Green Paradoxes ($d\bar{e}_{F1} > 0$)

Purchasing high-value deposits in the first period leads to the Green Paradoxes under the following conditions:

\[
\begin{align*}
\frac{d\tilde{e}_{F1}}{d\bar{e}_{F1}} > 0 \iff \sigma &< \alpha \cdot \frac{p_{x2}[X_{eF1} - \bar{X}_{eF1}]}{p_{e1}} \cdot \frac{\mu_1 e_{F1} \bar{\eta}_{F1,1}}{x_{A1} + x_{N1} - x_{E1}} \\
\frac{d\tilde{D}}{d\bar{e}_{F1}} > 0 \iff \sigma &< \beta \cdot \frac{p_{x2}[X_{eF1} - \bar{X}_{eF1}]}{p_{e1}} \cdot \frac{\mu_1 e_{F1} \bar{\eta}_{F1,1}}{x_{A1} + x_{N1} - x_{E1}}
\end{align*}
\]

\[
\tilde{D}(\bar{e}_{F1}, \bar{e}_{F2}) = \left(c_1 \bar{e}_{F1}^d + c_2 (\bar{e}_{F1} + \bar{e}_{F2})^d \right)^{\frac{l}{a}}
\]
Analytical Results ($d\bar{e}_{F2} > 0$)

Due to purchasing high-value deposits in the second period

- the weak green paradox occurs if and only if the present fossil fuel price falls ($dp_{e1} < 0$)
- and the cumulative emissions do not decline by more than $d\bar{e}_{F2}$ if $\Gamma_1 \leq 0$, and they decline if $\Gamma_1 > 0$ and $\bar{\Gamma}_2 \geq 0$

$$\bar{\Gamma}_2 \geq 0 \text{ iff } \frac{e_{F2}\bar{\eta}_{F2,1}}{e_{N1}|\eta_{N1}|} + \frac{e_{F2}\bar{\eta}_{F2,1}}{e_{F1}\bar{\eta}_{F1,1}} \geq 1$$
Motivation

The Model

Eastern Oil

Offshore Oil

Conclusion

Acting Tomorrow

Conditions for the Green Paradoxes \((d\bar{e}_{F2} > 0)\)

Purchasing high-value deposits in the second period leads to the Green Paradoxes under the following conditions:

\[
\frac{d e_{F1}}{d \bar{e}_{F2}} > 0 \quad \Leftrightarrow \quad \sigma > \frac{p_{x2} [X^{E2}_{eF1} - \bar{X}^{E2}_{eF1}]}{p_{e1}} \cdot \frac{\mu_{2eF2}\eta_{F2,2}}{p_{x2}(x^{s}_{A2} + x^{s}_{N2} - x_{E2})} \left(\frac{e_{F2}\eta_{F2,1}}{e_{N2}\eta_{N2}} + \frac{e_{F2}\eta_{F2,1}}{e_{F2}\eta_{F2,2}}\right)^{-1}
\]

\[
\frac{d \bar{D}}{d \bar{e}_{F2}} > 0 \quad \Leftrightarrow \quad \sigma \geq \frac{p_{x2} [X^{E2}_{eF1} - \bar{X}^{E2}_{eF1}]}{p_{e1}} \cdot \frac{\mu_{2eF2}\eta_{F2,2}}{p_{x2}(x^{s}_{A2} + x^{s}_{N2} - x_{E2})} \left(\frac{-\bar{r}_{2}^{D}}{p_{e1}e_{N1}\eta_{N1}} - \frac{\bar{r}_{1}^{D}}{p_{e2}e_{N2}\eta_{N2}} + \frac{\bar{\Theta}}{\bar{e}_{F2}\eta_{F2,2}} \frac{\mu_{2eF2}\eta_{F2,2}}{p_{x2}(x^{s}_{A2} + x^{s}_{N2} - x_{E2})}\right) \quad \text{if} \quad \bar{r}_{2}^{D} \leq 0
\]
Graphical Analysis ($de_{F1} > 0$)
Graphical Analysis ($d e_{F_1} > 0$)
Graphical Analysis (de_{F1} > 0)
Motivation

The Model

Eastern Oil

Offshore Oil

Conclusion

Acting Today

Graphical Analysis (d_\text{e}_{F1} > 0)

![Graphical Analysis Diagram](image)
Motivation

The Model

Eastern Oil

Offshore Oil

Conclusion

Acting Today

Analytical Results ($d_{\text{e}F1} > 0$)

Due to purchasing low-value deposits in the first period

- the commodity price in period two falls ($d\rho_{x2} < 0$)
- the present fossil fuel price rises ($d\rho_{e1} > 0$)
- the emissions in the first period decline by less than $d_{\text{e}F1}$
- and the cumulative emissions decline and decline by more than $d_{\text{e}F1}$ if $\Gamma_1 < 0$
Analytical Results ($d_{eF2} > 0$)

Due to purchasing low-value deposits in the second period

- the commodity price in period two rises ($dp_{x2} > 0$)
- the fossil fuel prices rise ($dp_{et} > 0$)
- the emissions in the first period decline
- and the cumulative emissions decline and can decline by more than d_{eF2} if $\Gamma_1 > p_{e2}$
Conclusion

- Purchasing high-value deposits might lead to an increase in cumulative and present emissions.
 - The conditions for the green paradoxes are similar to those in case of carbon demand reducing policies.
- Purchasing low-value deposits does lead to a decrease in cumulative and present emission.
- In general, purchasing deposits might also lead to negative cumulative carbon leakage and, by acting tomorrow, to negative present carbon leakage.
Conclusion

- Purchasing high-value deposits might lead to an increase in cumulative and present emissions
 - The conditions for the green paradoxes are similar to those in case of carbon demand reducing policies
- Purchasing low-value deposits does lead to a decrease in cumulative and present emission
- In general, purchasing deposits might also lead to negative cumulative carbon leakage and, by acting tomorrow, to negative present carbon leakage
Purchasing high-value deposits might lead to an increase in cumulative and present emissions.

The conditions for the green paradoxes are similar to those in case of carbon demand reducing policies.

Purchasing low-value deposits does lead to a decrease in cumulative and present emission.

In general, purchasing deposits might also lead to negative cumulative carbon leakage and, by acting tomorrow, to negative present carbon leakage.
Conclusion

- Purchasing high-value deposits might lead to an increase in cumulative and present emissions

The conditions for the green paradoxes are similar to those in case of carbon demand reducing policies

- Purchasing low-value deposits does lead to a decrease in cumulative and present emission

- In general, purchasing deposits might also lead to negative cumulative carbon leakage and, by acting tomorrow, to negative present carbon leakage
For Further Reading

- Thomas Eichner & Rüdiger Pethig.
 Carbon Leakage, the Green Paradox and Perfect Future Markets.

- Bård Harstad.
 Buy Coal! A Case for Supply-Side Environmental Policy.

- Michael Hoel.
 Supply Side Climate Policy and the Green Paradox.

- Hendrik Ritter & Mark Schopf.
 Unilateral Climate Policy: Harmful or even Disastrous?
Fossil Fuel Market - Acting Today

On the fossil fuel market, purchasing high-value or low-value deposits today affects the present and the cumulative extraction:

\[
\begin{align*}
\text{d} \tilde{e}_{F1} &= - \frac{\Gamma_0 - p_{e1} [p_{e2} + p_{x2} X_{eF2eF2} e_{N2} | \eta N2 |]}{\Gamma_0} \text{d} \tilde{e}_{F1} \\
&\quad - \frac{[X_{eF1}^{E2} - X_{eF1}^{E2}] e_{N1} | \eta N1 | [p_{e2} + p_{x2} X_{eF2eF2} e_{N2} | \eta N2 |]}{\Gamma_0} \text{d} p_{x2} \\
\text{d} \tilde{e}_{F\Sigma} &= - \frac{\Gamma_0 - p_{e1} \Gamma_1}{\Gamma_0} \text{d} \tilde{e}_{F1} - \frac{[X_{eF1}^{E2} - X_{eF1}^{E2}] e_{N1} | \eta N1 | \Gamma_1}{\Gamma_0} \text{d} p_{x2} \\
\text{d} e_{F1} &= - \frac{\Gamma_0 - p_{e1} [p_{e2} + p_{x2} X_{eF2eF2} e_{N2} | \eta N2 |]}{\Gamma_0} \text{d} e_{F1} \\
&\quad - \frac{X_{eF1} e_{N1} | \eta N1 | [p_{e2} + p_{x2} X_{eF2eF2} e_{N2} | \eta N2 |]}{\Gamma_0} \text{d} p_{x2} \\
\text{d} e_{F\Sigma} &= - \frac{\Gamma_0 - p_{e1} \Gamma_1}{\Gamma_0} \text{d} e_{F1} - \frac{X_{eF1} e_{N1} | \eta N1 | \Gamma_1}{\Gamma_0} \text{d} p_{x2}
\end{align*}
\]
On the fossil fuel market, purchasing high-value or low-value deposits tomorrow affects the present and the cumulative extraction:

\[
\begin{align*}
\mathrm{d}e_{F1} &= -\frac{p_{e2}p_{x2}X^{E2}_{eF1eF2}e_{N1}\vert\eta_{N1}\vert - p_{x2}\bar{X}^{E2}_{eF1\bar{e}F2}e_{N1}\vert\eta_{N1}\vert \left[p_{e2} + p_{x2}X^{E2}_{eF2eF2}e_{N2}\vert\eta_{N2}\vert \right]}{\Gamma_0} \mathrm{d}\bar{e}_{F2} \\
&\quad - \frac{\left[X^{E2}_{eF1} - \bar{X}^{E2}_{eF1} \right] e_{N1}\vert\eta_{N1}\vert \left[p_{e2} + p_{x2}X^{E2}_{eF2eF2}e_{N2}\vert\eta_{N2}\vert \right]}{\Gamma_0} \mathrm{d}p_{x2} \\
\mathrm{d}\tilde{e}_{F\Sigma} &= -\frac{\Gamma_0 - p_{e2}\Gamma_2 - p_{x2}\bar{X}^{E2}_{eF1\bar{e}F2}e_{N1}\vert\eta_{N1}\vert \Gamma_1}{\Gamma_0} \mathrm{d}\bar{e}_{F2} - \frac{\left[X^{E2}_{eF1} - \bar{X}^{E2}_{eF1} \right] e_{N1}\vert\eta_{N1}\vert \Gamma_1}{\Gamma_0} \mathrm{d}p_{x2} \\
\mathrm{d}e_{F1} &= -\frac{p_{e2}p_{x2}X^{E2}_{eF1eF2}e_{N1}\vert\eta_{N1}\vert}{\Gamma_0} \mathrm{d}\bar{e}_{F2} \\
&\quad - \frac{X^{E2}_{eF1}e_{N1}\vert\eta_{N1}\vert \left[p_{e2} + p_{x2}X^{E2}_{eF2eF2}e_{N2}\vert\eta_{N2}\vert \right]}{\Gamma_0} \mathrm{d}p_{x2} \\
\mathrm{d}\tilde{e}_{F\Sigma} &= -\frac{\Gamma_0 - p_{e2}\Gamma_2}{\Gamma_0} \mathrm{d}\bar{e}_{F2} - \frac{X^{E2}_{eF1}e_{N1}\vert\eta_{N1}\vert \Gamma_1}{\Gamma_0} \mathrm{d}p_{x2}
\end{align*}
\]
Commodity Market

On the commodity market, purchasing high-value or low-value deposits affects the commodity price in period two:

\[\frac{dp_{x2}}{p_{x2}} = \frac{p_{x2}}{\sigma} \left(\frac{\Theta}{\sigma} \frac{\mu_1}{x_{A1}^s + x_{N1}^s - x_{E1}} \frac{d\tilde{e}_{F1}}{\tilde{e}_{F1}} + \frac{\mu_2}{p_{x2} (x_{A2}^s + x_{N2}^s - x_{E2})} d\tilde{e}_{F2} \right) \]

\[\frac{dp_{x2}}{p_{x2}} = \frac{p_{x2}}{\sigma} \left(\left(\frac{\Theta}{\sigma} + \frac{\nu_1}{x_{A1}^s + x_{N1}^s - x_{E1}} \right) \frac{d\tilde{e}_{F1}}{\tilde{e}_{F1}} - \frac{\nu_2}{p_{x2} (x_{A2}^s + x_{N2}^s - x_{E2})} \frac{d\tilde{e}_{F2}}{\tilde{e}_{F2}} \right) \]

\[\bar{\Theta} = \frac{p_{x2} [x_{E2}^{e_{F1}} - x_{e_{F1}}^{E2}]}{x_{A1}^s + x_{N1}^s - x_{E1}} + \frac{p_{x2} [x_{e_{F1}}^{E2} - x_{e_{F1}}^{E2}]}{p_{x2} (x_{A2}^s + x_{N2}^s - x_{E2})} \quad \text{and} \quad \Theta = \frac{p_{x2} [x_{e_{F1}}^{E2}]}{x_{A1}^s + x_{N1}^s - x_{E1}} + \frac{p_{x2} [x_{E2}^{e_{F1}}]}{p_{x2} (x_{A2}^s + x_{N2}^s - x_{E2})} \]