Modelling the potential for industrial energy efficiency in IEA’s WEO

Dr Fabian Kesicki
International Energy Agency
International Energy Workshop, Paris, 20 June 2013
Emerging economies determine industrial energy growth

Global industrial energy demand increases by almost 40% up to 2035
Today’s industrial energy demand

Energy flows in the industry sector, 2010

- Coal: 926 Mtoe
- Oil: 714 Mtoe
- Gas: 615 Mtoe
- Renewables: 197 Mtoe
- Electricity and heat: 765 Mtoe
- Iron and steel: 436 Mtoe
- Coke oven and blast furnaces: 253 Mtoe
- Chemicals and petrochemicals: 393 Mtoe
- Feedstock for petrochemicals: 543 Mtoe
- Cement: 247 Mtoe
- Pulp and paper: 150 Mtoe
- Other industry: 1195 Mtoe

Energy intensive sectors represent around 60% of industrial energy demand
Modelling industrial energy demand

Industry accounts for more than a third of final energy consumption, but modelling faces difficulties:

- No dominating sub-sector, many different production processes
- Energy savings can impact on product quality and thus limit deployment
- Data problems as energy consumption can evolve quickly and autoproduction can distort energy consumption
Sub-sectors in industry

<table>
<thead>
<tr>
<th>Sub-sector</th>
<th>Activity variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron and steel</td>
<td>Crude Steel</td>
</tr>
<tr>
<td>Chemical and petrochemical</td>
<td>Ethylene</td>
</tr>
<tr>
<td></td>
<td>Propylene</td>
</tr>
<tr>
<td></td>
<td>Aromatics</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
</tr>
<tr>
<td></td>
<td>Ammonia</td>
</tr>
<tr>
<td>Cement</td>
<td>Cement</td>
</tr>
<tr>
<td>Pulp and paper</td>
<td>Paper</td>
</tr>
</tbody>
</table>
| Other industries | Value-added in industry

Four energy-intensive sectors are explicitly modelled
Description of industry model

- Activity projection
 - Econometric projection based on value added, price and pop.
- Energy intensity
 - Process changes (e.g. primary vs secondary steel-making)
 - Technical energy savings
 - Systems optimisation
 - Operational efficiency
- Fuel shares
 - Multiple logit model, electricity and fuel treated separately
Process steps by sub-sector in industry

Industry modelling in WEM accounts for process changes in the various sub-sectors
Acceptable payback periods and technology penetration vary with the scenario and the corresponding policy assumptions.
While growth will significantly slow down for iron & steel and cement, other industry sectors see continued growth, particularly in non-OECD countries.
Energy demand development

Average annual change in industrial activity, efficiency and energy demand, 2010-2035

Energy demand will increase in all sub-sectors as rapid growth in industrial production outpaces energy efficiency improvements.
Energy efficiency can cut industrial energy demand growth by around 30%
Policies to overcome existing barriers

- Numerous barriers impede the implementation of energy efficiency: short payback periods, lack of awareness, distraction from core business, production interruption

- Efficiency policies
 - Funding of research
 - Requirements for energy audits and management systems
 - Training and capacity building
 - Performance requirements
 - Financing mechanisms
Conclusions

- Industry is a driving factor behind energy demand growth in the future
- Energy efficiency can slow down this growth by around 30%
- Recent data and solid characterisation of production process are crucial for industrial energy modelling
- Future research needs to shed more light on the black box ‘non-energy-intensive’ industries