Geoengineering and abatement: a 'flat' relationship under uncertainty

Johannes Emmerling\(^1\) and Massimo Tavoni\(^1\)

\(^1\)Euro-Mediterranean Center on Climate Change (CMCC), CIP Division & FEEM

Motivation - About Geoengineering

- What is Geoengineering (GE)?

Carbon Dioxide Removal (CDR) and Solar Radiation Management (SRM)
Motivation - About GE

Why?

- Reducing emissions is the best climate policy, “but it is not happening”
- GE potentially could counteract anthropogenic global warming
Motivation - About GE

Why?
- Reducing emissions is the best climate policy, “but it is not happening”
- GE potentially could counteract anthropogenic global warming

How it could work
- Eruption of Mount Pinatobu in 1991 (ejection of 10^{12} gS) led to a drop of global temperature by 0.5°C

Implementation costs of SRM: 5-50 billion USD annually
But: considerable risks and side effects
Motivation - About GE

- **Why?**
 - Reducing emissions is the best climate policy, “but it is not happening”
 - GE potentially could counteract anthropogenic global warming

- **How it could work**
 - Eruption of Mount Pinatobu in 1991 (ejection of 10 TgS) led to a drop of global temperature by 0.5°C

- Implementation costs of SRM: 5-50 billion USD annually
- But: considerable risks and side effects
SRM via SO_2 injection (Crutzen, 2006) could offset global warming (Lenton and Vaughan, 2009), cost-effective and easily implementable (Robock et al., 2009).

Uncertainty about climate sensitivity (Ricke et al., 2012), the relation with expected sea-level rise (Irvine et al., 2012), precipitation (Moreno-Cruz et al., 2012), and dynamic responses (Driscoll et al., 2012).

Strategic Geoengineering: Barrett (2008); Millard-Ball (2012); Ricke et al. (2013); Weitzman (2012)
Literature on GE

- SRM via SO_2 injection (Crutzen, 2006) could offset global warming (Lenton and Vaughan, 2009), cost-effective and easily implementable (Robock et al., 2009).
- Uncertainty about climate sensitivity (Ricke et al., 2012), the relation with expected sea-level rise (Irvine et al., 2012), precipitation (Moreno-Cruz et al., 2012), and dynamic responses (Driscoll et al., 2012).
- Strategic Geoengineering: Barrett (2008); Millard-Ball (2012); Ricke et al. (2013); Weitzman (2012)

- Geoengineering vs. Mitigation:
Research approach

- Geoengineering is fast, inexpensive, but uncertain and not yet implementable
- How much does this affect the optimal mitigation effort? CEA vs. CBA?
Geoengineering and abatement: a 'flat' relationship under uncertainty

Introduction

Research approach

- Geoengineering is fast, inexpensive, but uncertain and not yet implementable
- How much does this affect the optimal mitigation effort? CEA vs. CBA?

Probability p of Geoengineering

becoming a technically feasible/acceptable/reasonable climate policy option

- $p = 0$: mitigation (and adaptation) only option
- $p = 1$: no need for mitigation / GE as insurance
- $0 < p < 1$: When becomes mitigation unnecessary?
Geoengineering and abatement: a 'flat' relationship under uncertainty

Introduction

Research approach

- Geoengineering is fast, inexpensive, but uncertain and not yet implementable
- How much does this affect the optimal mitigation effort? CEA vs. CBA?

Probability p of Geoengineering

becoming a technically feasible/acceptable/reasonable climate policy option

- $p = 0$: mitigation (and adaptation) only option
- $p = 1$: no need for mitigation / GE as insurance
- $0 < p < 1$: When becomes mitigation unnecessary?

(Delicately) optimistic view:

- perfectly effective to offset global warming
- no risks or side effects
- minimizing expected costs & risk neutrality
Outline

1 Introduction

2 Uncertain effectiveness of Geoengineering

3 Multiple uncertainties

4 Application using WITCH

5 Conclusion
Uncertain effectiveness of GE

Basic framework used throughout the paper (here: CEA):

- Express all variables in radiative forcing potential
- Uncertain effectiveness of Geoengineering $0 \leq \tilde{\phi} \leq 1$ (Bernoulli) and carbon-climate response $\tilde{x}\lambda (E \tilde{x} = 1)$

$$\Delta T \equiv \tilde{x}\lambda (S^{bau} - A_1 - A_2 - \tilde{\phi} G) \leq \Delta T^{max}$$
Uncertain effectiveness of GE

Basic framework used throughout the paper (here: CEA):

- Express all variables in radiative forcing potential
- Uncertain effectiveness of Geoengineering $0 \leq \tilde{\varphi} \leq 1$ (Bernoulli) and carbon-climate response $\tilde{x} \lambda (E\tilde{x} = 1)$
 \[\Delta T \equiv \tilde{x} \lambda (S^{bau} - A_1 - A_2 - \tilde{\varphi} G) \leq \Delta T^{max}\]
- Two-period model: only uncertainty about Geoengineering

\[
\min_{A_1} V(A_1, p) = C_A(A_1) + \beta (p C_G (S^{gap} - A_1) + (1 - p) C_A (S^{gap} - A_1))
\]

where $S^{gap} = S^{bau} - \lambda \Delta T^{max}$
Assumption 1: $C'_G(x) \leq C'_A(x) \forall x$ (ensures that $G = 0$ or $A_2 = 0$)
Uncertain effectiveness of GE

- Assumption 1: $C'_G(x) \leq C'_A(x) \ \forall x$ (ensures that $G = 0$ or $A_2 = 0$)

- $A_1^*(p)$ is decreasing in p if and only if $V_{A_1p} \geq 0$ (A1)

- (Lemma 1) If V_{A_1p} is non-negative, the function $A_1^*(p)$ is strictly concave in p if and only if the following condition holds:

\[
\frac{V_{A_1A_1A_1}}{V_{A_1A_1}} > 2 \frac{V_{A_1A_1p}}{V_{A_1p}}.
\]
Uncertain effectiveness of GE

- Assumption 1: $C'_G(x) \leq C'_A(x) \forall x$ (ensures that $G = 0$ or $A_2 = 0$)

- $A^*_1(p)$ is decreasing in p if and only if $V_{A_1p} \geq 0$ (A1)

- (Lemma 1) If V_{A_1p} is non-negative, the function $A^*_1(p)$ is strictly concave in p if and only if the following condition holds:

$$
\frac{V_{A_1A_1A_1}}{V_{A_1A_1}} > 2 \frac{V_{A_1A_1p}}{V_{A_1p}}.
$$

- Lemma 1 can be applied for a wide set of abatement cost functions, including $C_A(A) \propto A^\alpha, \alpha \in [2,3]$ (Eyckmans and Cornillie, 2000)
Uncertain effectiveness of GE

- Assumption 1: $C'_G(x) \leq C'_A(x) \ \forall x$ (ensures that $G = 0$ or $A_2 = 0$)

- $A_1^*(p)$ is decreasing in p if and only if $V_{A_1}p \geq 0$ (A1)

- (Lemma 1) If $V_{A_1}p$ is non-negative, the function $A_1^*(p)$ is strictly concave in p if and only if the following condition holds:

$$\frac{V_{A_1 A_1 A_1}}{V_{A_1 A_1}} > 2 \frac{V_{A_1 A_1 p}}{V_{A_1 p}}.$$

- Lemma 1 can be applied for a wide set of abatement cost functions, including $C_A(A) \propto A^\alpha, \alpha \in [2,3]$ (Eyckmans and Cornillie, 2000)

- CBA with damage function instead: less stringent; for a fully quadratic specification, $A_1^*(p)$ is linear in p
Multiple Uncertainties

- fully quadratic specification (parameters c_A, c_G, and d)

$$A^*_1 = \frac{S^{bau} - \Delta T^{max}}{1 + \frac{1}{\beta E\Omega(\tilde{\phi})}} \left(\lambda \frac{E[\bar{x}\Omega(\tilde{\phi})]}{E\Omega(\tilde{\phi})} \right)$$

where $\Omega(\tilde{\phi}) = \frac{c_G/\tilde{\phi}^2}{c_G/\tilde{\phi}^2 + c_A}$.

- $\Omega(\tilde{\phi})$: abatement in period two: decreasing and convex in $\tilde{\phi}$ if $c_G \ll c_A$ (C1)
Multiple Uncertainties

- fully quadratic specification (parameters c_A, c_G, and d)
 \[
 A_1^* = \frac{S^{bau} - \Delta T^{max} / \left(\lambda \frac{E[\bar{x}\Omega(\bar{\phi})]}{E\Omega(\bar{\phi})} \right)}{1 + \frac{1}{\beta E\Omega(\bar{\phi})}} \text{ where } \Omega(\bar{\phi}) = \frac{c_G}{\bar{\phi}^2} + c_A.
 \]

- $\Omega(\bar{\phi})$: abatement in period two: decreasing and convex in $\bar{\phi}$ if $c_G \ll c_A$ (C1)

Results

- denominator: cost effectiveness (independent of \bar{x})
 - If x independent of $\bar{\phi} \implies$ An increase in risk (SSD) in $\bar{\phi}$ increases A_1^* if C1 holds (higher expected compliance costs)

- numerator: target stringency (insurance effect)
 - If $(\bar{x}, \bar{\phi})$ exhibit positive quadrant dependency (P.Q.D.), A_1^* is lower than under independence
A numerical example

- Specify probability of geoengineering being feasible:
 \[\tilde{\varphi} \sim \{1 : p; 0 : (1 - p)\} \]

- Numerical specification
 - \(c_A/c_G = 100 \) (McClellan et al., 2012)
 - \(\tilde{x} \sim U[0, 2] \)

- Relationship between \(\tilde{x} \) and \(\tilde{\varphi} \):
 - So far, little is known about the correlation
 - Think of \(\tilde{\varphi} \) as measure of public support: highly positive correlation possible
 - FGM copula allowing a Spearman’s \(\rho \) of \(-0.8/0/ +0.8\)
A numerical example

Share of first-period abatement for different values of p
Numerical model

- WITCH model (World Induced Technical Change Hybrid model) with a total radiative forcing target of $2.8 \frac{W}{m^2}$ in 2100
- Additional option of SO_2 Geoengineering from 2050 onwards
- Fixed probability p of Geoengineering becoming available
Numerical model

- WITCH model (World Induced Technical Change Hybrid model) with a total radiative forcing target of $2.8 \frac{W}{m^2}$ in 2100
- Additional option of SO_2 Geoengineering from 2050 onwards
- Fixed probability p of Geoengineering becoming available

- Specification of GE
 - Linear cost function, 10 billion USD/TgS (Robock et al., 2009)
 - Radiative Forcing of $-1.75 \frac{W}{m^2 TgS}$ (Gramstad and Tjøtta, 2010)
 - Stratospheric residence time: 2 years
A remark: Risk Aversion

- Risk aversion maintaining intertemporal preferences (Epstein-Zin) \[\Rightarrow \text{shifts the } A_1^*(p) \text{ unambiguously upwards} \]
- Implementation in regional IAM not obvious:
 - Aggregate over regions and states of nature (order matters unless \(\gamma = rra \) or i.i.d. multiplicative uncertainty)
 - Negishi weights: further complicate things (equalizing MU (Negishi) vs. “spreading it out” (Risk Aversion))
A remark: Risk Aversion

- Risk aversion maintaining intertemporal preferences (Epstein-Zin) \(\Rightarrow \) shifts the \(A_1^*(\rho) \) unambiguously upwards

- Implementation in *regional* IAM not obvious:
 - Aggregate over regions and states of nature (order matters unless \(\gamma = rra \) or *i.i.d.* multiplicative uncertainty)
 - Negish weights: further complicate things (equalizing MU (Negish) vs. “spreading it out” (Risk Aversion))

\[
W_G^{EZ} = \sum_{t=1}^{T} P_t \frac{1}{1-\eta} \left(\left[\sum_{s=1}^{S} \pi_{st} \left(\sum_{r=1}^{R} \frac{P_{rt}}{P_t} c_{rst}^{1-\gamma} \right) \right]^{\frac{1-\eta}{1-rra}} - 1 \right) (1+\rho)^{-t}
\]
Results - CEA, $p = 0.5$
Results - CBA, $p = 0.5$
Results - the shape of $A_1^*(\rho)$

- Risk Aversion ($rra = 20$): CEA: no effect; CBA, increase from 24.6% to 28.1%
Results - Relationship between \tilde{x} and $\tilde{\phi}$

How big is the insurance effect of Geoengineering ($\rho = 0.5$)?

- Uncertain climate sensitivity of $\{2.5 : 0.5; 3.9 : 0.5\}$ (baseline: 3.2) with different correlation structures (ρ)
How big is the insurance effect of Geoengineering ($\rho = 0.5$)?

- Uncertain climate sensitivity of $\{2.5 : 0.5; 3.9 : 0.5\}$ (baseline: 3.2) with different correlation structures (ρ)
Conclusion

- Geoengineering can have a strong impact on the optimal climate change policy.
- However, *uncertainty* and the *dynamic* decision model provide an argument for a substantial mitigation effort.
- Even disregarding risk/ambiguity aversion and side effects of GE.
- Analytical results confirmed by IAM implementation.
- Result hold qualitatively also when considering a sizable potential “insurance effect” of Geoengineering.
Thank you!

The research leading to these results has received funding from the Italian Ministry of Education, University and Research and the Italian Ministry of Environment, Land and Sea under the GEMINA project.
Bibliography

Bickel, J., and S. Agrawal (2011), 'Reexamining the economics of aerosol geoengineering.'

Moreno-Cruz, J. B., and D. W. Keith (2012), 'Climate policy under uncertainty: a case for solar geoengineering', *Climatic Change*.

